Solving Difference Equations and Inverse Z Transforms

Using Z Transforms To Solve Difference Equations

For LTI systems, described by linear constant coefficient difference equations

Using Z Transforms To Solve Difference Equations

$$
Y(z)\left[1+a_{1} z^{-1}+\ldots+a_{n} z^{-n}\right]=X(z)\left[b_{0}+b_{1} z^{-1}+\ldots+b_{m} z^{-m}\right]
$$

Solve for the Transfer Function H(z) by dividing:

$$
\begin{aligned}
H(z) & =\frac{Y(z)}{X(z)}=\frac{\left[b_{0}+b_{1} z^{-1}+\ldots+b_{m} z^{-m}\right]}{\left[1+a_{1} z^{-1}+\ldots+a_{n} z^{-n}\right]} \\
& =\frac{\left[b_{0} z^{n}+b_{1} z^{n-1}+\ldots+b_{m} z^{n-m}\right]}{\left[z^{n}+a_{1} z^{n-1}+\ldots+a_{n}\right]}
\end{aligned}
$$

Poles and Zeros

- Poles of $\mathrm{H}(\mathrm{z})$: roots of denominator polynomial
- Zeros of $\mathrm{H}(\mathrm{z})$: roots of numerator polynomial
note: find these after canceling any common factors - and do this for polynomials in z (not z^{-1})

Using Z Transforms To Solve Difference Equations

- Find the output of an LTI system in the Z domain, $Y(z)$, by multiplying the z transform of the input, $X(z)$ with $H(z)=$ the Z transform of the impulse response
- Then you can use the Inverse Z Transform to get the output signal $y[k]$ from its Z transform, $Y(z)$

Ex. Given a difference equation,

$$
y[n]-.3 y[n-1]=x[n]
$$

find the z-transform of the equation and then find the response $Y(z)$ of the system to an input $x[n]=(.6)^{n} u[n]$.

First step-take z Transforms of both sides of the equation.
Since $x[n]$ is given, we can use the z-transform tables to substitute for $\mathrm{X}(\mathrm{z})$.

Factor out $Y(z)$-since we will want to inverse Z-transform it to get $\mathrm{y}[\mathrm{n}]$

Ex. Given a difference equation,

$$
y[n]-.3 y[n-1]=x[n]
$$

find the z-transform of the equation and then find the response $Y(z)$ of the system to an input $x[n]=(.6)^{n} u[n]$.

$$
\begin{gathered}
Y[z]-0.3 z^{-1} Y[z]=\frac{z}{z-.6} \\
Y(z)\left[1-0.3 z^{-1}\right]=\frac{z}{z-.6} \\
Y(z)=\left(\frac{z}{z-.06}\right)\left(\frac{z}{z-0.3}\right)
\end{gathered}
$$

Now put everything in terms of \mathbf{z}, rather
than having z^{-1} terms-and solve for $Y(z)$

What if you wanted to find the response in the time domain?
\Rightarrow We can use Partial Fraction Expansion to invert the z-transform.
Similar to what you saw for Laplace Transforms,

$$
Y(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}=\frac{N(z)}{D(z)}=\sum_{k=1}^{N} \frac{r_{k} z}{z-p_{k}}
$$

$$
p_{k}=\text { pole } \quad r_{k}=\text { residue }
$$

where
For Distinct (non-repeated) roots $\quad r_{k}=\left.\left[\frac{Y(z)}{z}\left(z-p_{k}\right)\right]\right|_{z-p_{k}}$
Then use tables to invert the z-transform, e.g.

$$
a^{n} u[n] \leftrightarrow \frac{z}{z-a}
$$

Properties of 2 -Transtorm

Property	Sequence	z-Transform	ROC
	$g[n]$	G(z)	Rg
	$h[n]$	$H(z)$	Rh
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G(z)+\beta H(z)$	Include Rg \cap Rh
Time-shifling	$g[n-k]$	$z^{*} G(z)$	Rg except possibly the point $z=0$ or ${ }^{20}$
Multiplication by exponential sequence	$\arg [n]$	$G(7 / a)$	arg
Convolution	$g[n]{ }^{\prime \prime} /[n]$	$G(z) H(z)$	Include $\mathrm{Rg} \cap \mathrm{Rh}$
Time reversal	$g[-n]$	G(1/2)	$1 / \mathrm{Rg}$
Differentiation of $G(z)$	$n g[m]$	$-z \frac{d G(z)}{d z}$	Rg except possibly the point $z=0$ or 20

Commonly used $z-$ Transform pairs

Sequence	z-Transform	ROC
$\delta[n]$	$\frac{1}{1-z^{-1}}$	All values of z
$\mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>1$
$\alpha^{n} \mu[n]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|>\|\alpha\|$
$n \alpha^{n} \mu[n]$	$\frac{1}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|>\|\alpha\|$
$(n+1) \alpha^{n} \mu[n]$	$\frac{1-\left(r \cos \alpha_{6}\right) z^{-1}}{1-\left(2 r \cos \omega_{6}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>\|\alpha\|$
$\left(r^{n} \cos \omega_{o} n\right) \mu[n]$	$\frac{1-\left(r \sin \omega_{0}\right) z^{-1}}{1-\left(2 r \cos \omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>\|r\|$
$\left(r^{n} \sin \omega_{o} n\right) \mu[n]$	$\|z\|>\|r\|$	

Returning to our example

$$
y[n]-.3 y[n-1]=x[n]
$$

find the z-transform of the equation and then find the response $Y(z)$ of the system to an input $x[n]=(.6)^{n} u[n]$.

$$
\begin{aligned}
& Y[z]-0.3 z^{-1} Y[z]=\frac{z}{z-.6} \\
& Y(z)\left[1-0.3 z^{-1}\right]=\frac{z}{z-.6} \\
& Y(z)=\left(\frac{z}{z-.6}\right)\left(\frac{z}{z-0.3}\right)
\end{aligned}
$$

$$
\frac{Y(z)}{z}=\left(\frac{2}{z-.6}\right)+\left(\frac{-1}{z-0.3}\right)
$$

Ex. Given a difference equation,

$$
y[n]-.3 y[n-1]=x[n]
$$

find the z-transform of the equation and then find the response $Y(z)$ of the system to an input $x[n]=(.6)^{n} u[n]$.

$$
\begin{aligned}
& Y[z]-0.3 z^{-1} Y[z]=\frac{z}{z-.6} \\
& Y(z)\left[1-0.3 z^{-1}\right]=\frac{z}{z-.6} \\
& Y(z)=\left(\frac{z}{z-.6}\right)\left(\frac{z}{z-0.3}\right) \\
& \frac{Y(z)}{z}=\left(\frac{2}{z-.6}\right)+\left(\frac{-1}{z-0.3}\right) \\
& Y(z)=\left(\frac{2 z}{z-.6}\right)+\left(\frac{-z}{z-0.3}\right)
\end{aligned}
$$

Now move the "saved" z back into the expression, so that these terms match things in the tables

Ex. Given a difference equation,

$$
y[n]-.3 y[n-1]=x[n]
$$

find the z-transform of the equation and then find the response $Y(z)$ of the system to an input $x[n]=(.6)^{n} u[n]$.

$$
\begin{aligned}
& Y[z]-0.3 z^{-1} Y[z]=\frac{z}{z-.6} \\
& Y(z)\left[1-0.3 z^{-1}\right]=\frac{z}{z-.6} \\
& Y(z)=\left(\frac{z}{z-.6}\right)\left(\frac{z}{z-0.3}\right) \\
& \frac{Y(z)}{z}=\left(\frac{2}{z-.6}\right)+\left(\frac{-1}{z-0.3}\right)
\end{aligned}
$$

Finally, use

$$
Y(z)=\left(\frac{2 z}{z-.6}\right)+\left(\frac{-z}{z-0.3}\right)
$$

tables to get
$y[n]$

$$
y[n]=2(.6)^{n} u[n]-(.3)^{n} u[n]
$$

One-sided Z Transform

- Key property—useful when considering initial conditions of difference equations:

$$
\begin{aligned}
Z & (x[k+1])=\sum_{n=0}^{\infty} x[n+1] z^{-n} \\
& =\left(\sum_{n=0}^{\infty} x[n] z^{-(n-1)}\right)-x[0] z \\
& =z \sum_{n=0}^{\infty} x[n] z^{-n}-x[0] z \\
& =z X(z)-z x[0]
\end{aligned}
$$

Example: for output y and input u

$$
y[k+1]-0.8 y[k]=x[k] \quad \text { with initial condition } \quad y[0]=2
$$

and unit step input $\quad x[k]=u[k]$
Take the one-sided Z transform of equation and input to get

$$
[z Y[z]-z y[0]]-0.8 Y[z]=\frac{z}{z-1}
$$

Solve for $Y(z)$ since we eventually want to get closed form solution $y[k]$ for the difference equation.

$$
Y[z]=y[0] \frac{z}{z-0.8}+\frac{z}{(z-1)(z-0.8)}
$$

$$
Y[z]=y[0] \frac{z}{z-0.8}+\frac{z}{(z-1)(z-0.8)}
$$

Need to partial fraction the second term:

$$
\frac{12^{\text {not } z}}{(z-0.8)(z-1)}=\frac{k_{1}}{z-0.8}+\frac{k_{2}}{z-1}
$$

So

$$
\begin{aligned}
\frac{z}{(z-0.8)(z-1)} & =\frac{k_{1} z}{z-0.8}+\frac{k_{2} z}{z-1} \\
& =\frac{-5 z}{z-0.8}+\frac{5 z}{z-1}
\end{aligned}
$$

Hence

$$
Y[z]=y[0] \frac{z}{z-0.8}+\frac{-5 z}{(z-0.8)}+\frac{5 z}{z-1}
$$

$$
Y[z]=y[0] \frac{z}{z-0.8}+\frac{-5 z}{(z-0.8)}+\frac{5 z}{z-1}
$$

Inverse Z transforms give

$$
y[k]=\left\{[y[0]-5](0.8)^{k}+5\right\} u[k]
$$

So with $\mathrm{y}[0]=2$,
get solution:

$$
y[k]=\left\{-3(0.8)^{k}+5\right\} u[k]
$$

Ex. Find the Inverse z-Transform of

$$
X(z)=\frac{2 z^{2}-5 z}{(z-2)(z-3)}
$$

We begin by dividing out one " z " to protect it for later use in with out inverse \mathbf{z} transform table

$$
\frac{X(z)}{z}=\frac{2 z-5}{(z-2)(z-3)}
$$

Ex. Find the Inverse z-Transform of

$$
X(z)=\frac{2 z^{2}-5 z}{(z-2)(z-3)}
$$

Expand:

$$
\frac{X(z)}{z}=\frac{2 z-5}{(z-2)(z-3)}=\frac{\frac{-1}{-1}}{z-2}+\frac{\frac{1}{1}}{z-3}
$$

Next, bring back the " z " so that it matches the form in the table

$$
X(z)=\frac{z}{z-2}+\frac{z}{z-3}
$$

Ex. Find the Inverse z-Transform of

$$
X(z)=\frac{2 z^{2}-5 z}{(z-2)(z-3)},|z|>3
$$

Expand:

$$
\begin{aligned}
& \frac{X(z)}{z}=\frac{2 z-5}{(z-2)(z-3)}=\frac{\frac{-1}{-1}}{z-2}+\frac{\frac{1}{1}}{z-3} \\
& X(z)=\frac{z}{z-2}+\frac{z}{z-3} \\
& \left.\therefore x_{n}\right]=(2)^{n}{ }_{n}[n]+(3)^{n}{ }_{n}[n]
\end{aligned}
$$

Ex. Find the Inverse z-Transform of

$$
\begin{aligned}
& X(z)=\frac{2 z^{2}-5 z}{(z-2)(z-3)},|z|>3 \\
& X(z)=\frac{z}{z-2}+\frac{z}{z-3} \\
& \therefore x[n]=(2)^{n}{ }_{u}[n]+(3)^{n}{ }_{n}[n]
\end{aligned}
$$

Ex. Given $h[n]=a^{n} u[n](|a|<1)$ and $x[n]=u[n]$, find $y[n]=x[n] * h[n]$.

$$
\begin{aligned}
H(z) & =\frac{z}{z-a} \quad X(z)=\frac{z}{z-1} \\
\frac{V(z)}{z} & =\frac{z}{(z-a)(z-1)}=\frac{a}{\frac{a}{a-1}}+\frac{1}{1-a} \\
y(n) & =\frac{a}{a-1} a^{n}{ }_{n}[n]+\frac{1}{1-a} n_{n}[n] \\
& =\frac{1}{1-a}\left(1-a^{n+1}\right){ }_{n}[n]
\end{aligned}
$$

